[JavaSpecialists 168] - The Delegator

1of5

N\

- \'\ 'A‘ \ .
J Javaspecialists.eu

Conference
Venue Hire

Java Specialist

Club Java Training

‘ Home ‘ Newsletter

The Java Specialists' Newsletter
> |ssue 168 »2009-01-15 »- Category: Language »- Java version: Java 5+

0 24 subscribe Free £J RSS Feed

The Delegator

by Dr. Heinz M. Kabutz
Abstract:
In this newsletter we show the reflection plumbing needed for writing a socket monitor that sniffs all the bytes being
sent or received over all the Java sockets. The Delegator is used to invoke corresponding methods through some
elegant guesswork.

Welcome to the 168th issue of The Java(tm) Specialists’' Newsletter and welcome to 2009! On Christmas Day
(25th December), | was playing tennis with Helene and with a hard whack broke a string, the first in 30 years of
playing tennis! The tennis lessons are obviously having some effect on my game. It took only 15 days to have the
string repaired in Crete. | need to either save up for a stringing machine or buy a spare raquet for next time.
According to Coach Kathy, | can expect this to happen every few months.

Upcoming Java Master Courses:
Duesseldorf, Germany, Aug 22
Chania, Crete, Sep 6
Cape Town, South Africa, Sep 12

In-house courses if these dates or locations do not suit you. Note that the course in Crete may also be attended
remotely via webinar.

The Delegator

A few years ago, | showed how to count bytes sent over RMI sockets. This mechanism helped me tune the
performance for an ERP system in 2002, though I'm not sure it still works with modern versions of Java.

This time, however, | wanted to build a general mechanism for listening to bytes flowing over sockets in Java, not
just RMI socket. This should be done with minimal code impact. Subclassing Socket would thus probably not be an
option.

It turns out that the implementation to do this is possible, but non-trivial. | have broken the problem up into two
digestible chunks. This first part shows the reflection plumbing that we will need to get this magic working. The
second part will come in our next newsletter and will show how to use that magic to sniff sockets and to then
integrate the resulting measurements with MXBeans so we can view the statistics in JConsole.

Socket uses the strategy pattern for the actual communication and we are able to specify our own implementation.
Thus all we would need to do is write our own strategy that counts the bytes flowing backwards and forwards.
Unfortunately the standard strategy implementations are package access in the java.net.* package, so we are not
able to use them directly. We certainly cannot subclass them, but we could call the methods with reflection.
However, because the classes themselves are package access, we need to find the declared constructor, set that to
be accessible and then instantiate it. [Note: In the original version of this newsletter, | offered a more complicated
way to instantiate the object.]

// then we Tload the class, e.g. "java.net.SocksSocketImpl"

Class imp1cl = Class.forName(delegatecClass);

// we find the constructor

Constructor delegateConstructor =
imp1C1.getDeclaredConstructor();

delegateConstructor.setAccessible(true);

// we have constructed the package access class

this.delegate = delegateConstructor.newInstance();

However, even if we have constructed the object, all of the methods inside the superclass, in our case
"java.net.Socketimpl", are protected, so we cannot call them directly, even if our class is a subclass of Socketimpl.

So, | ventured out to write a Delegator class, which allows me to automatically delegate the method call to the
correct matching method. So all we have to do in our own Socketimpl is to write:

public void close() throws IOException {
delegator.invoke();

Java Resources

http://www javaspecialists.eu/archive/Issue168.html

Contact 1

Book Review
Concurrency
Exceptions

EGul

linspirational
lLanguage
ElPerformance
Elsoftware Engineering

iTips and Tricks

Java Courses _J

= Java Master
= Java Foundation
= Java 5 Tiger
= Design Patterns

» find out more

What is the Java
Specialists Club?

Looking for a super
conference room for
your next company
event?

—-— s

Crete is your perfect
destination.

Click here for
more details

8/3/11 3:03 PM



[JavaSpecialists 168] - The Delegator

20f5

This even works when the method has parameters, such as:

public void Tisten(imt backlog) throws IOException {
delegator.invoke(backlog);

The invoke() method discovers what to invoke by finding the method name using the stack trace and then searching
for a matching method based on the parameters of the arguments.

We find the method name like this:

private String extractMethodName() {
Throwable t = mew Throwable();
String methodName = t.getStackTrace()[2].getMethodName();
return methodName;

We match the parameters to the method as follows:

private Method findMethod(String methodName, Object[] args)
throws NoSuchMethodeException {
Class<?> clazz = superclass;
if (args.length == 0) {
return clazz.getDeclaredMethod(methodName);

}
Method match = muwlT1;
next:
for (Method method : clazz.getDeclaredMethods()) {
if (method.getName().equals(methodName)) {
Class<?>[] classes = method.getParameterTypes();
if (classes.length == args.length) {
for (imt i = 0; i < classes.length; i++) {
Class<?> argType = classes[i];
argType = convertPrimitiveClass(argType);
if (largType.isInstance(args[i])) comtimue next;

if (match == mul1) {
match = method;
} else {
throw mew DelegationException(
"Duplicate matches™);
}

}

-

}

}
if (match != mull) {
returm match;

throw mew DelegationException(
"Could mot find method:

+ methodName) ;

The convertPrimitiveClass() method is needed because of autoboxing. When we pass a primitive to an Object...
varargs list, it gets converted to its wrapper class. The convertPrimitiveClass() method converts the primitive class of
the delegate object parameter to its matching wrapper class, so we can check that the parameter is an instance.
(Maybe read that sentence again until it makes sense.)

There are some limitations to my approach. It cannot handle null parameters. It cannot handle methods where the
parameters are subclasses of each other. However, in these cases it will throw an exception, rather than do the
wrong thing.

If a method call is not delegated correctly, you can specify the method name and parameter types explicitely, like
this:

public void connect(InetAddress address, imt port)
throws IOException {
delegator
.delegateTo("connect
.invoke(address, port);

, InetAddress.class, imt.class)

As you will see in the code, it does this by creating an instance of an inner class that then stores the method name
and parameter types.

Return Types
The invoke() method always returns the correct type, using generics. Thus we do not need to type cast when we

write:

pubTlic FileDescriptor getFileDescriptor() {
returm delegator.invoke();

}

There are two exceptions where we need to do some more work. The first is with primitives and the second is when
we use the result of the invoke() method as a method parameter directly. We solve the primitives using autoboxing:

public imt getPort() {
Integer result = delegator.invoke();
returm result;

The second issue is also easy to solve, by writing the result of invoke() first to a local variable:

http://www javaspecialists.eu/archive/Issue168 .html

8/3/11 3:03 PM



[JavaSpecialists 168] - The Delegator

30f5

pubTic InputStream getInputStream() throws IOException {
InputStream real = delegator.invoke(Q);
return mew DebuggingInputStream(real, monitor);

Fixing Broken Encapsulation

The programmers who wrote the java.net package took some short-cuts by modifying fields directly from other
classes, rather than calling methods. It is thus not enough to simply delegate the method calls. We have to go one
step further. Before we call any method, we need to copy all the fields in our shared superclass to our delegated
object. After the method is called, we need to copy the fields back to our object. Here is how we do that:

writeFields(superclass, source, delegate);
method.setAccessible(true);

Object result = method.invoke(delegate, args);
writeFields(superclass, delegate, source);
return result;

The writeFields method is quite simple:

private void writeFields(Class clazz, Object from, Object to)
throws Exception {
for (Field field : clazz.getDeclaredFields()) {
field.setAccessible(true);
field.set(to, field.get(from));
}
}

Putting it all together

When we put all these elements together, we get the Delegator class, which we can use for delegating method calls
easily to another class. Here is the full monty;

package util;

public class DelegationException extemds RuntimeException {
public DelegationException(String message) {
super(message);

pubTic DelegationException(String message, Throwable cause) {
super(message, cause);

public DelegationException(Throwable cause) {
super(cause);

package util;
import java.lang.reflect.*;

public class Delegator {
private fimal object source;
private fimal oObject delegate;
private fimal Class superclass;

public Delegator(Object source, Class superclass,
Object delegate) {
this.source = source;
this.superclass = superclass;
this.delegate = delegate;
}

public Delegator(Object source, Class superclass,
String delegateClassName) {
try {
this.source = source;
this.superclass = superclass;
Class imp1Cl = Class.forName(delegateClassName);
Constructor delegateConstructor =
imp1C1.getDeclaredConstructor();
delegateConstructor.setAccessible(true);
this.delegate = delegateConstructor.newInstance();
catch (RuntimeException e) {
throw e;
catch (Exception e) {
throw mew DelegationException(
"Could not make delegate object

-

, €);
}
}

pub'l'ic{ fimal <T> T invoke(Object... args) {
try

String methodName = extractMethodName();

Method method = findMethod(methodName, args);

@suppresswarnings("unchecked™)

T t = (T) invokeO(method, args);

return t;

} catch (NoSuchmethodException e) {
throw mew DelegationException(e);

}
private Object invokeO(Method method, Object[] args) {
try {

writeFields(superclass, source, delegate);
method.setAccessible(true);

http://www javaspecialists.eu/archive/Issue168.html

8/3/11 3:03 PM



[JavaSpecialists 168] - The Delegator http://www javaspecialists.eu/archive/Issue168.html

Object result = method.invoke(delegate, args);
writeFields(superclass, delegate, source);
returm result;

catch (RuntimeException e) {

throw e;

catch (InvocationTargetException e) {

throw mew DelegationException(e.getCause());
catch (Exception e) {

throw mew DelegationException(e);

B el

}

private void writeFields(Class clazz, Object from, Object to)
throws Exception {
for (Field field : clazz.getDeclaredrFields()) {
field.setAccessible(true);
field.set(to, field.get(from));

}

private String extractMethodName() {
Throwable t = mew Throwable();
String methodName = t.getStackTrace()[2].getMethodName();
returm methodName;

private Method findvethod(String methodName, Object[] args)
throws NoSuchMethodException {
Class<?> clazz = superclass;
if (args.length == 0) {
returm clazz.getDeclaredMethod(methodName);

}
Method match = mull;
next:
for (Method method : clazz.getDeclaredMethods()) {
if (method.getName().equals(methodName)) {
Class<?>[] classes = method.getParameterTypes();
if (classes.length == args.length) {
for (imt i = 0; i < classes.length; i++) {
Class<?> argType = classes[i];
argType = convertPrimitiveClass(argType);
if (largType.isInstance(args[i])) comtinue next;

if (match == mul1) {
match = method;
} else {
throw mew DelegationException(
"Duplicate matches™);
}

}
}

}
if (match != null) {
returm match;

throw mew DelegationException(
"Could mot fimd method:
}

private Class<?> convertPrimitiveClass(Class<?> primitive) {
if (primitive.isPrimitive()) {
if (primitive == int.class) {
return Integer.class;

+ methodName) ;

if (primitive == boolean.class) {
returm Boolean.class;

1
if (primitive == float.class) {
returm Float.class;

if (primitive == lomng.class) {
returm Long.class;

if (primitive == double.class) {
returm Double.class;

if (primitive == short.class) {
return Short.class;

1
if (primitive == byte.class) {
returnm Byte.class;

1
if (primitive == char.class) {
returm Character.class;

returm primitive;

pubTic DelegatorMethodFinder delegateTo(String methodName,
Class<?>... parameters) {
return mew DelegatorMethodFinder(methodName, parameters);

public class DelegatorMethodFinder {
private fimal Method method;

public DelegatorMethodFinder(String methodName,
Class<?>... parameterTypes) {
try {
method = superclass.getDeclaredMethod(
methodName, parameterTypes

H
} catch (RuntimeException e) {
throw e;
} catch (Exception e) {
throw mew DelegationException(e);

4of 5 8/3/11 3:03 PM



[JavaSpecialists 168] - The Delegator http://www javaspecialists.eu/archive/Issue168.html

public <T> T invoke(Object... parameters) {
@suppresswarnings("unchecked™
T t = (T) Delegator.this.invokeO(method, parameters);
return t;

In our next newsletter we will combine this with Sockets to count how many bytes are transferred and then write an
MXBean to show this information in JConsole.

Kind regards

Heinz

» Language Articles »- Related Java Course » Discuss at The Java Specialist Club

© 2010 Heinz Kabutz - All Rights

Reserved Sitemap seo web design Catch22 Marketing

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. JavaSpecialists.eu is not
connected to Oracle, Inc. and is not sponsored by Oracle, Inc.

Sof5 8/3/11 3:03 PM



