[JavaSpecialists 167] - Annotation Processing Tool http://www javaspecialists.eu/archive/Issue167 .html

Javaspecialists.eu

Conference
Venue Hire

Java Specialist

Club Java Resources

Java Training

‘ Home ‘ Newsletter Contact 1

The Java Specialists' Newsletter _
> Issue 167 » 2008-12-05 » Category: Language » Java version: Java 6 Book Review
liconcurrency
Exceptions
24 subscribe Free £J RSS Feed =Gul
linspirational
Annotation Processing Tool iLanguage
by Dr. Heinz M. Kabutz ElPerformance
Abstract: -Sft—E . .
In this newsletter we answer the question: "How do we force all subclasses to contain a public no-args constructor?" w
The Annotation Processing Tool allows us to check conditions like this at compile time, rather than only at runtime. BliTips and Tricks

Welcome to the 167th issue of The Java(tm) Specialists' Newsletter. A special welcome to my subscribers from
Ethiopia and Mongolia, increasing our countries to 120! We are still missing Albania and a few countries in Africa
and Asia. | am also not sure about some disputed territories in South America. Greenland, Antarctica and the Java Courses )
Vatican are also still missing. So, if you have friends who are Java programmers in these regions, please ask them

to subscribe and send me a quick note :-) FuavaMasler

= Java Foundation

Upcoming Java Master Courses: = Java 5 Tiger
Duesseldorf, Germany, Aug 22 = Design Patterns
Chania, Crete, Sep 6

find out
Cape Town, South Africa, Sep 12 » find out more

In-house courses if these dates or locations do not suit you. Note that the course in Crete may also be attended m:_é:;?

remotely via webinar.
Annotation Processing Tool

Here is a pop quiz for you, thanks to Christoph Engelhardt: "How do we force all subclasses to contain a public
no-args constructor?"

To do this at runtime would be trivial. You could simply check inside the superclass' constructor whether the subclass
returned by this.getClass() contains a no-args constructor like so:

Looking for a super
~ . conference room for
import java.lang.reflect.Constructor; your next company
event?

public abstract class ABC {
public ABC(Q) {
checkNoArgsConstructor();

private void checkNoArgsConstructor() {
Class clazz = getClass(Q);

try {
Constructor noargs = clazz.getConstructor(); Crete is your perfect
} catch (NosuchMmethodException e) { destination.

throw mew AssertionError("Class + clazz.getName() +

" needs a mo-args comstructor™); Click here for

} more details

That was so easy it would hardly qualify as a quiz. Let's up the ante a bit by requiring that we want to discover
subclasses of ABC without a no-args constructor at compile time.

It is possible to do this since Java 5. However, in Java 5, the mechanism to do this was separate to the javac
compiler and the classes we needed were in the com.sun.* package structure. In Java 6, the mechanism is
incorporated into javac and we have a set of classes in the javax. * package that we can use to examine the
annotations.

The first step is to define an annotation NoArgsconstructor:

package eu.javaspecialists.tools.apt;
import java.lang.annotation.*;

@Inherited

@ocumented
@retention(RetentionPolicy.SOURCE)
@rarget(ElementType.TYPE)

public @imterface NoArgsConstructor {

l1of3 8/3/11 3:05 PM



[JavaSpecialists 167] - Annotation Processing Tool http://www javaspecialists.eu/archive/Issue167 html

20f3

The annotation is marked with meta-annotations. @Inherited is necessary so that the subclasses inherit the
annotation. We would like that annotation to appear in the JavaDocs, so we mark it as @Documented. We use the
@Retention meta-annotation to specify that the annotation will only be available to APT and not at runtime with
reflection. Lastly, we use @Target to define that the annotation is only allowed for classes.

Next we need to write a processor for this annotation. APT uses a variation of the Visitor design pattern.
Unfortunately | found the documentation to be a little bit hard to understand. Hopefully this sample code will make it
easier for you to write your own annotation processors.

package eu.javaspecialists.tools.apt;

import javax.annotation.processing.*;

import javax.lang.model.Sourceversion;

import javax.lang.model.element.*;

import javax.lang.model.type.*;

import javax.lang.model.util.SimpleTypevisitor6;
import javax.tools.Diagnostic;

import java.util.Set;

@supportedAnnotationTypes (
"eu.javaspecialists.tools.apt.NoArgsConstructor™)
@supportedSourceversion(Sourceversion.RELEASE_6)
public class NoArgsConstructorProcessor extemds AbstractProcessor {
pubTic boolean process(Set<? extemds TypeElement> annotations,
RoundEnvironment env) {
for (TypeElement type : annotations) {
processNoArgsconstructorClasses(env, type);

return true;

private void processNoArgsConstructorcClasses(
RoundEnvironment env, TypeElement type) {
for (Element element : env.getElementsAnnotatedwith(type)) {
processClass(element);

}

private void processClass(Element element) {
if (!doesClassContainNoArgsConstructor(element)) {

processingEnv.getMessager().printMessage(
Diagnostic.Kind.ERROR,
"Cclass " + element +

needs a No-Args Conmstructor™);
}
}

private booleam doesClassContainNoArgsConstructor(Element el) {
for (Element subelement : el.geteEnclosedElements()) {
if (subelement.getkind() == ElementKind.CONSTRUCTOR &&
subelement.getModifiers().contains(Modifier.PUBLIC)) {
TypeMirror mirror = subelement.asType();
if (mirror.accept(noArgsvisitor, mull)) returm true;

returnm false;

private static fimal Typevisitor<Boolean, Void> noArgsvisitor =
new SimpleTypevisitor6<Boolean, void>() {
public Boolean visitExecutable(ExecutableType t, void v) {
return t.getParameterTypes().isEmpty();

}
};

The process() method is called by the compiler when it processes the annotation. Since we have specified that we
are only interested in the NoArgsConstructor annotation, we will only be given classes that use this annotation or
whose ancestor uses it.

In the doesClassContainNoArgscConstructor() method, we iterate through all of the class elements and pick out
the public constructors. A class that does not have any, will automatically fail the test. Note that when we do not
specify any constructor, Java automatically adds a default no-args constructor.

Once we have found our constructor element, we visit it with to determine whether the argument list is empty. Using
the Visitor pattern in this case helps us to avoid a downcast.

The code looks very easy now that it has been completed, but it took me a while to get it to this state.

Once you have written the annotation processor, you need to package it into a jar file. In addition, you should include
a file META-INF/services/javax.annotation.processing.Processor with the text
eu.javaspecialists.tools.apt.NoArgsConstructorProcessor as a single line.

Once we have all these files packaged in a jar file, let's call it apttools.jar, we can add a processing parameter to
our call to javac:

javac -classpath .;apttools.jar -processorpath apttools.jar *.java

As a test case, we define several classes:

import eu.javaspecialists.tools.apt.NoArgsConstructor;
@NoArgsconstructor
public abstract class NoArgsSupercClass {
public NoArgsSuperClass() {
}
}

// Passes

8/3/11 3:05 PM



[JavaSpecialists 167] - Annotation Processing Tool http://www javaspecialists.eu/archive/Issue167 html

public class PublicNoArgsConstructor extemds NoArgsSuperClass {
pubTic PublicNoArgsConstructor() {
}

}

// Passes

pubTlic class DefaultConstructor extemds NoArgsSupercClass {
}

// Passes
public class SeveralConstructors extemds NoArgsSupercClass {
pubTic SeveralConstructors(String as) {

pubTic SeveralConstructors(imt ai) {
}

public SeveralConstructors() {

}

// Fails

pubTlic class NonPublicConstructor extemds NoArgsSuperClass {
NonPubTicConstructor() {

}

// Fails

public class wrongConstructor extemnds NoArgsSupercClass {
pubTic wrongConstructor(String astring) {
}

When we compile these classes with the NoArgsConstructorProcessor, we see the following compiler errors:

error: Class NonPublicConstructor needs a No-Args Constructor
error: Class WrongConstructor needs a No-Args Constructor
2 errors

There are lots of possibilities with the new Java 6 Annotation Processing Tool. In this newsletter, we showed how we
can use annotations to restrict the Java language in ways that were not originally in the design.

Kind regards

Heinz

» Language Articles > Related Java Course »- Discuss at The Java Specialist Club

© 2010 Heinz Kabutz - All Rights

Reserved Sitemap seo web design Catch22 Marketing

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. JavaSpecialists.eu is not
connected to Oracle, Inc. and is not sponsored by Oracle, Inc.

30of3 8/3/11 3:05 PM



