
Home Newsletter Java Specialist
Club Java Training Conference

Venue Hire Java Resources Contact

The Java Specialists' Newsletter
 Issue 097 2004-10-17 Category: Language Java version: Sun JDK 1.5.0-b64

0 Subscribe Free RSS Feed Print

Mapping Objects to XML Files using Java 5 Annotations

by Amotz Anner

Welcome to the 97th edition of The Java(tm) Specialists' Newsletter. We had a beautiful day down here in Cape
Town, South Africa. This morning I was concerned because it was cloudy, but fortunately it cleared up for our braai.
In South Africa, a popular pass-time is to make a fire with wood, then once this has burnt down, to grill some lamb
chops, sausage or chicken on the coals. We only braai once the coals are completely burnt, to avoid having flames
leap up and burn the meat. The coals have to be so hot that you cannot hold your hand at the level of the meat for
more than eight seconds. Some wood holds its heat longer, and you must make sure that the flavour of the meat is
not adversely affected by the wood you choose. The braai is more for the social interaction than for the food and so
it is common to start the fire only after the guests have arrived. Another interesting tradition is to invite guests for a
braai, but ask them to bring their own meat and drinks, and maybe a salad. We call that a bring-and-braai. The
company is very important, and although we sometimes braai on our own, we usually prefer to have lots of happy
friendly faces around. For example, today we were 17!

So, if you visit South Africa, and tell me when you will be in Cape Town, you will probably be invited to a "braai". We
will probably ask you to bring some of the food, and when you arrive, I will still be chopping the wood, but besides
that, it is a lot of fun, and you should accept the invitation :)

I find it amazing how quickly some people pick up a new technology. Amotz Anner sent me an example of how you
can use annotations to write some very interesting code. Then Amotz did me a huge favour and wrote this
newsletter. Thank you very very much.

Amotz is the Founder of X.M.L. Systems Ltd located on:
46, Jerusalem St. Flat 9B
Kfar-Saba 44369
Israel
Cell: +972 (54) 686-0707

That was not the only interesting communication with Amotz. He discovered that in the JDK 1.5.0, if you compile
code that uses the ternary if-else operator, with one side of the results nnuullll then it can deliver wrong results if you
immediately assign this to a ffiinnaall local variable. This compiler bug has been fixed and will be available in the next
release. For more details, please look at our posts on JavaLobby and TheServerSide.

This bug does concern me. With most Java bugs that I have seen, upgrading to a new JRE solves the problem. With
this bug, you need to upgrade AND recompile all your sources. It is easy for this bug to make it into your production
code library, and unless you have a very good test procedure, you might never pick it up. So, be warned!

Enough from me, over to Amotz...

Upcoming Java Master Courses:
 Duesseldorf, Germany, Aug 22
 Chania, Crete, Sep 6
 Cape Town, South Africa, Sep 12

In-house courses if these dates or locations do not suit you. Note that the course in Crete may also be attended
remotely via webinar.

Mapping Objects to XML Files using Java 5 Annotations

The following is an example of using the new annotation capability of Java 5.0 to extend the expressiveness of Java.

My code relies on XML to declare all sort of components, and then have Java classes construct themselves from
those declarations. It is NOT a persistence framework, for the following reason:

I consider the XML declaration to be primary, and the Java class to be secondary, a mere tool to realize the
declaratory intent of the XML document. In contrast, in a persistence framework, the Java class is primary and the
XML document is just a vehicle used to contain persistence data, and has no standing in and of itself.

So my requirement is that the Java class adapts itself to the XML declaration rather than the other way around. I
also did not want to use any external IDL-type definitions to match Java classes to XML.

Book Review

Concurrency

Exceptions

GUI

Inspirational

Language

Performance

Software Engineering

Tips and Tricks

What is the Java
Specialists Club?

[JavaSpecialists 097] - Mapping Objects to XML Files using ... http://www.javaspecialists.eu/archive/Issue097.html

1 of 5 8/3/11 3:05 PM

Prior to annotations, I was severely limited in my choices. What I could, and did do, was to use reflection to look for
all public fields of a class whose names match those of an XML attribute in the appropriate declaration, and initialize
those fields from the attribute value. This was a fragile solution, since there was no clear indication as to the special
status of the names of those fields, and all to often I broke my code by changing field names, thus breaking the
connection to the XML declaration.

Then came annotations and solved all my problems in one fell swoop. With them I can:

Clearly indicate which fields are initialized from an XML declaration.1.
Dissolve the field name - attribute name bond.2.
Extend usage from just XML attributes to XML elements as well.3.
Supply centrally/locally defined default values.4.

So how is that magic achieved? In four easy steps, of course.

Step 1: Annotation is defined

First, an annotation is defined, in the same way as an interface would be, as follows:

iimmppoorrtt java.lang.annotation.*;

/**
 * Make annotation available at run time and only allow fields to
 * be modified by this annotation.
 *
 * We have 3 properties, defaults for all
 */
@@RReetteennttiioonn(RetentionPolicy.RUNTIME)
 @@TTaarrggeett(ElementType.FIELD)
 ppuubblliicc @iinntteerrffaaccee FromXml {
 /**
 * Normally, the field's value is taken from an attribute with
 * an identical name. xPath can be used to specify a different
 * source, breaking the name linkage
 */
 String xPath() ddeeffaauulltt """";
 /**
 * A default value to be used if field source is not found in
 * the XML (we call it "dflt" since "default" is reserved)
 */
 String dflt() ddeeffaauulltt """";
 /**
 * Flag to trim fetched data.
 */
 bboooolleeaann trim() ddeeffaauulltt ttrruuee;
}

Step 2: Fields are Annotated

Second, fields have to be annotated. Syntactically, annotations are modifiers, so the result looks like:

 // This is equivalent to old usage.
 @@FFrroommXXmmll public int a;
 // This is the new usage.
 @@FFrroommXXmmll(xPath = ""aa//bb//cc"", dflt = ""bblluuee"") ppuubblliicc String color;

Step 3: Call initializer

The third easy step is to call the initializer with a Class and Element references:

 XmlConstructor.constructFromXml(this, elem, false);

A more complete example is our ComponenSlider class that manages a slider that can be configured using XML and
annotations. You need the dom4j jar file to get this to compile.

iimmppoorrtt org.dom4j.Element;
iimmppoorrtt javax.swing.*;

ppuubblliicc ccllaassss ComponentSlider {
 @@FFrroommXXmmll pprriivvaattee bboooolleeaann inverted = ffaallssee;
 @@FFrroommXXmmll pprriivvaattee iinntt min = Integer.MIN_VALUE;
 @@FFrroommXXmmll pprriivvaattee iinntt max = Integer.MIN_VALUE;
 @@FFrroommXXmmll pprriivvaattee iinntt minorTickInterval = Integer.MIN_VALUE;
 @@FFrroommXXmmll pprriivvaattee iinntt majorTickInterval = Integer.MIN_VALUE;
 @@FFrroommXXmmll pprriivvaattee bboooolleeaann snapToTick = ffaallssee;

 ppuubblliicc ComponentSlider(JSlider slider, Element def) {
 XmlConstructor.constructFromXml(tthhiiss, def);
 slider.setMinimum(min);
 slider.setMaximum(max);
 slider.setInverted(inverted);
 iiff (minorTickInterval != Integer.MIN_VALUE) {
 slider.setMinorTickSpacing(minorTickInterval);
 slider.setPaintTicks(true);
 slider.setSnapToTicks(snapToTick);
 }
 iiff (majorTickInterval != Integer.MIN_VALUE) {
 slider.setMajorTickSpacing(majorTickInterval);
 slider.setPaintTicks(true);
 slider.setPaintLabels(true);
 slider.setSnapToTicks(snapToTick);
 }
 }
}

[JavaSpecialists 097] - Mapping Objects to XML Files using ... http://www.javaspecialists.eu/archive/Issue097.html

2 of 5 8/3/11 3:05 PM

Step 4: Supply constructFromXml method (once)

And finally, but just once, the above method has to be supplied. It looks like:

iimmppoorrtt org.dom4j.*;
iimmppoorrtt java.lang.reflect.Field;

ppuubblliicc ccllaassss XmlConstructor {
 ppuubblliicc ssttaattiicc vvooiidd constructFromXml(Object obj, Element elem) {
 constructFromXml(obj, elem, ffaallssee);
 }

 /**
 * Set object's fields from values of XML declarations, using
 * "@FromXml" annotation
 *
 * Scans all fields in an object for a annotated elements, and
 * initialize them, according to the fields type.
 *
 * @param useSuper If super class is to be processed
 * @param o The object to scan for fields
 * @param element The element whose attributes are the data
 * sources.
 */
 ppuubblliicc ssttaattiicc vvooiidd constructFromXml(Object o, Element element,
 bboooolleeaann useSuper) {
 iiff (element == nnuullll) {
 rreettuurrnn;
 }
 Class aClass = getAppropriateClass(o, useSuper);

 ffoorr (Field field : aClass.getDeclaredFields()) {
 FromXml fromXml = field.getAnnotation(FromXml.ccllaassss);
 iiff (fromXml != nnuullll) {
 field.setAccessible(ttrruuee);
 handleAnnotatedField(fromXml, element, field, o);
 }
 }
 }

 pprriivvaattee ssttaattiicc vvooiidd handleAnnotatedField(FromXml fromXml,
 Element element,
 Field field, Object o) {
 String value = getValue(fromXml.xPath(), element, field, fromXml);
 iiff (!isEmpty(value)) {
 iiff (fromXml.trim()) {
 value = value.trim();
 }
 setField(field, o, value);
 }
 }

 pprriivvaattee ssttaattiicc String getValue(String xPath, Element element,
 Field field, FromXml fromXml) {
 String value = nnuullll;
 iiff (!isEmpty(xPath)) {
 Node node = element.selectSingleNode(xPath);
 iiff (node != nnuullll) {
 value = node.getText();
 }
 } eellssee {
 // If no xPath, use name
 // Get value of matching attribute
 value = element.attributeValue(field.getName());
 }

 iiff (value == nnuullll) {
 //Use default
 value = fromXml.dflt();
 }
 rreettuurrnn value;
 }

 pprriivvaattee ssttaattiicc vvooiidd setField(Field field, Object o, String value) {
 Class type = field.getType();
 ttrryy {
 // Now initialize field according to type
 iiff (type.equals(iinntt.ccllaassss)) {
 field.setInt(o, asHexInt(value));
 } eellssee iiff (type.equals(String.ccllaassss)) {
 field.set(o, value.intern());
 } eellssee iiff (type.equals(ddoouubbllee.ccllaassss)) {
 field.setDouble(o, Double.parseDouble(value));
 } eellssee iiff (type.equals(bboooolleeaann.ccllaassss)) {
 field.setBoolean(o, asBoolean(value));
 } eellssee iiff (type.equals(cchhaarr.ccllaassss)) {
 field.setChar(o, value.charAt(0));
 }
 } ccaattcchh (IllegalAccessException ex) {
 //// tthhiiss sshhoouulldd nnoott hhaappppeenn,, ssiinnccee wwee aarree sseettttiinngg tthhee aacccceessss
 //// ttoo ttrruuee
 tthhrrooww nneeww RuntimeException(ex);
 }
 }

 pprriivvaattee ssttaattiicc Class getAppropriateClass(Object o, bboooolleeaann useSuper) {
 Class aClass = o.getClass();
 iiff (useSuper) {
 aClass = aClass.getSuperclass();
 }
 rreettuurrnn aClass;
 }

 pprriivvaattee ssttaattiicc bboooolleeaann isEmpty(String test) {
 rreettuurrnn test == nnuullll || test.length() == 0;
 }

[JavaSpecialists 097] - Mapping Objects to XML Files using ... http://www.javaspecialists.eu/archive/Issue097.html

3 of 5 8/3/11 3:05 PM

 /**
 * Use hex conversion if string starts with "0x", else decimal
 * conversion.
 */
 pprriivvaattee ssttaattiicc iinntt asHexInt(String value) {
 iiff (value.toLowerCase().startsWith(""00xx"")) {
 rreettuurrnn Integer.parseInt(value.substring(2), 16);
 }
 rreettuurrnn Integer.parseInt(value);
 }

 pprriivvaattee ssttaattiicc bboooolleeaann asBoolean(String option) {
 iiff (!isEmpty(option)) {
 String opt = option.toLowerCase();
 rreettuurrnn ""yyeess"".equals(opt) || ""oonn"".equals(opt)
 || ""ttrruuee"".equals(opt) || ""11"".equals(opt);
 }
 rreettuurrnn ffaallssee;
 }
}

Very simple, really.

Next, we create an XML file that contains the attributes for the Slider class:

<?xml version="1.0" encoding="UTF-8"?>
<Slider xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
 xsi:noNamespaceSchemaLocation='file:/C:/XML%20SYS/XML%20Sys/XSD/Components.xsd'
 min="20" max="180" minorTickInterval="2" majorTickInterval="10">
 <xmlPath>checkup/weight</xmlPath>
</Slider>

And an example class that uses the ComponentSlider:

iimmppoorrtt org.dom4j.*;
iimmppoorrtt org.dom4j.io.SAXReader;
iimmppoorrtt javax.swing.*;
iimmppoorrtt java.io.*;

ppuubblliicc ccllaassss AnnotationDemo eexxtteennddss JFrame {
 pprriivvaattee JSlider slider = nneeww JSlider();

 ppuubblliicc AnnotationDemo(Element sliderDef) {
 nneeww ComponentSlider(slider, sliderDef);
 // HK: did you notice that you don't have to say:
 // getContentPane().add(...) in JDK 1.5 anymore?
 add(slider);
 }

 pprriivvaattee ssttaattiicc Element loadSliderXMLFile(String filename)
 tthhrroowwss FileNotFoundException, DocumentException {
 // The slider definition as XML
 Element sliderDef = nnuullll;
 // A reusable SAX parser
 SAXReader xmlReader = nneeww SAXReader();
 xmlReader.setIgnoreComments(ttrruuee);
 xmlReader.setMergeAdjacentText(ttrruuee);
 xmlReader.setStripWhitespaceText(ttrruuee);
 File file = nneeww File(filename);
 iiff (file.exists() && file.canRead()) {
 Document doc = xmlReader.read(nneeww FileInputStream(file));
 sliderDef = doc.getRootElement();
 }
 iiff (sliderDef == nnuullll) {
 tthhrrooww nneeww IllegalArgumentException(
 "Could not find XML declaration");
 }
 rreettuurrnn sliderDef;
 }

 ppuubblliicc ssttaattiicc vvooiidd main(String args[]) tthhrroowwss Exception {
 Element sliderDef = loadSliderXMLFile(args[0]);
 AnnotationDemo frame = nneeww AnnotationDemo(sliderDef);
 frame.setSize(500, 100);
 frame.setDefaultCloseOperation(EXIT_ON_CLOSE);
 frame.setLocationRelativeTo(nnuullll); // center the frame
 frame.setVisible(ttrruuee);
 }
}

I have not done it yet, but I can now initialize multi-dimensional arrays, lists, collections or what-not by
straightforward extensions of the above code. Obviously, it made no sense before annotations, as XML attributes
appear at most once. But with elements, there is no such limitation, and there is nothing to prevent database queries
and/or other trickery.

Left as an exercise to the reader, is another annotation which would be used to associate "slider" directly with
"weightSlider.xml", making annotation usage consistent, well documented and safe.

Have fun.

Amotz

P.S. I (Heinz) refactored Amotz's code a bit, so if you find bugs or do not like the style of the code, blame me :)

 Language Articles Related Java Course Discuss at The Java Specialist Club

[JavaSpecialists 097] - Mapping Objects to XML Files using ... http://www.javaspecialists.eu/archive/Issue097.html

4 of 5 8/3/11 3:05 PM

© 2010 Heinz Kabutz - All Rights
Reserved Sitemap seo web design Catch22 Marketing

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. JavaSpecialists.eu is not
connected to Oracle, Inc. and is not sponsored by Oracle, Inc.

[JavaSpecialists 097] - Mapping Objects to XML Files using ... http://www.javaspecialists.eu/archive/Issue097.html

5 of 5 8/3/11 3:05 PM

