[JavaSpecialists 009] - Depth-first Polymorphism

1of3

Javaspecialists.eu

Conference
Venue Hire

Java Specialist

Club Java Training

‘ Home ‘ Newsletter

The Java Specialists' Newsletter
> |ssue 009 - 2001-02-15 »- Category: Language »- Java version:

0 Subscribe Free 5 RSS Feed

Depth-first Polymorphism

by Dr. Heinz M. Kabutz

Welcome to the 9th issue of "The Java(tm) Specialists' Newsletter", where we look at "in-the-veld" tips and tricks
used by Java professionals. | want to thank all of you who respond to these letters, your comments make the late
nights writing these newsletters worthwhile :) And those of you who in their day-to-day communication are imitating
the style of these newsletters - you know who you are ! - keep trying ;-)

| must apologize that this newsletter is quite long. Unfortunately | am under severe time pressure at the moment so |
did not have time to make it shorter.

| was told after last week's newsletter that Java was not based only on C++ and Smalltalk, but also on Lisp ?!? (I did
not know that, no wonder it's so terribly slow. I'm surprised the JDK doesn't come with the Emacs editor.) Anyway, |
have to thank Michael Wolber from Infor AG in Germany for pointing that out and for his excellent contribution:

Greenspun's Tenth Rule of Programming: "any sufficiently complicated C or Fortran program contains an ad hoc
informally-specified bug-ridden slow implementation of half of Common Lisp."

And Java?

Upcoming Java Master Courses:
Duesseldorf, Germany, Aug 22
Chania, Crete, Sep 6
Cape Town, South Africa, Sep 12

In-house courses if these dates or locations do not suit you. Note that the course in Crete may also be attended
remotely via webinar.

Depth-first Polymorphism (or Customised Polyseme)

Consider the following class:

public class Polyseme {
public static class Top {
public void f(Object o) {
System.out.println("Top.f(object)™);

}
public void f(string s) {
System.out.printin("Top.f(String)™);

}

public static void main(String[] args) {
Top top = mew Top();
top.f(mew java.util.vector());
top.f("hello™);

; top.f((Object) "bye™);

}

Java looks for the method with the "narrowest" matching class for the parameter objects. Therefore, the output from
running this class is:

Top.f(Object)
Top.f(String)
Top.f(Object)

In Java, the virtual machine tries to find a matching method for your parameters, starting at the top of the hierarchy
and moving down. Say we have the following classes:

public class BreadthFirst {
public static class Top {
public void f(Object o) {
System.out.printin("Top.f(0bject)™);

public static class Middle extends Top {
public void f(string s) {
system.out.printin("Middle.f(String)™);

Java Resources

http://www javaspecialists.eu/archive/Issue009 .html

Contact 1

Book Review

liconcurrency
BSExceptions

EGul

-E)irational
lLanguage
-Mwe
Elsoftware Engineering
BiTips and Tricks

Java Courses)

= Java Master
= Java Foundation
= Java 5 Tiger
= Design Patterns

» find out more

What is the Java

Looking for a super
conference room for
your next company
event?

Crete is your perfect
destination.

Click here for
more details

8/3/11 3:03 PM

[JavaSpecialists 009] - Depth-first Polymorphism http://www javaspecialists.eu/archive/Issue009 .html

public static void main(string[] args) {
Top top = mew Middle();
top.f(mew java.util.vector());
top.f("hello™);
top.f((Object) "bye™);
}
}

The virtual machine will thus start at Top and check if there are any methods which would accept String.class or
Object.class, and indeed, Top.f(Object) would handle all those parameters. The output is therefore the following:

Top.f(0Object)
Top.f(0Object)
Top.f(Object)

We could "fix" this by overriding f(Object) and using instanceof to call the correct f() method (brrr - I'd rather get stuck
on the N2 than do that [for those not living in Cape Town, the N2 is notoriously dangerous, you either get shot at or
in or with if your car breaks down])

public class BreadthFirstFix {
public static class Top {
public void f(Object o) {
System.out.printin("Top.f(object)™);

public static class Middle extemnds Top {
public void f(Object o) {
if (o imstamceof String)
f((string)o);
else
super.f(o);

public void f(String s) {
System.out.printin("Middle.f(string)™);

public static void main(String[] args) {
Top top = mew Middle();
top.f(mew java.util.vector());
top.f("hello™);
; top.f((Object) "bye™);
}

The output would now look as we would expect:

Top.f(Object)
Middle.f(string)
Middle.f(string)

This might have the correct effect, but it does mean that we have to have such a silly "instanceof" in all the
subclasses. If we are designing a OO framework we want to have our clients subclass our classes without having to
do acrobatics to achieve this.

Christoph Jung mentioned this problem with Java to me a few weeks ago and we thought of some code you could
put at the highest level class that uses reflection to start at the lowest class and then tries to match the method to the
type before moving up the hierarchy. | call this "depth-first-polymorphism".

import java.lang.reflect.*;
public class DepthFirst {
public static class Top {
pr'ivat{e Method getPolymorphicMethod(Object param) {
try
Class cl1 = getClass(); // the bottom-most class
// we start at the bottom and work our way up
Class[] paramTypes = {param.getClass()};
while(!cl.equals(Top.class)) {
try {
// this way we find the actual method
returm cl.getDeclaredMethod(™f™, paramTypes);
} catch(NoSuchMethodException ex) {}
cl = cl.getSuperclassQ;

returnm null;

catch(RuntimeException ex) { throw ex; }
catch(Exception ex) { returm null; }

public void f(Object object) {
Method downPolymorphic = getPolymorphicMethod(object);
if (downpolymorphic == mull)
System.out.printin("Top.f(oObject)™);
} else {
try {
downPolymorphic.invoke(this, mew Object[] {object});

catch(RuntimeException ex) { throw ex; }
catch(Exception ex) {
throw mew RuntimeException(ex.tostring());

}
}

public static class Middle extends Top {

public void f(String s) {
System.out.printin("Middle.f(string)™);

public static class Bottom extemnds Middle {
public void f(Integer i) {
System.out.printin("Bottom. f(Integer)™);

public static class RockBottom extemds Bottom {

20f3 8/3/11 3:03 PM

[JavaSpecialists 009] - Depth-first Polymorphism http://www javaspecialists.eu/archive/Issue009 .html

public void f(String s) {
System.out.printin("RockBottom. Ff(Strimg)™);

}

public static void main(string[] args) {
Top top = mew RockBottom();
top.f(mew java.util.vector());
top.f("hello™);
top.f(mew Integer(42));
top = mew Bottom();
top.f(mew java.util.vector());
top.f("hello™);

; top.f(mew Integer(42));

}

The answer is this time:

Top.f(0Object)
RockBottom. f(String
Bottom.f(Integer)
Top.f(Object)
Middle.f(string)
Bottom.f(Integer)

When should you use this technique? Only if you have a lot of specific type handlers as subclasses of a common
superclass where it would make sense to add such a depth-first invoker. You can probably extract this functionality
and put it in a separate class. If you use this commercially please do the exception handling correctly, | didn't bother
in my example, in preparation for when | change my logo to "The C# Specialists".

Thanks for your comments, | always appreciate your feedback.
Regards

Heinz

» Language Articles > Related Java Course »- Discuss at The Java Specialist Club

© 2010 Heinz Kabutz - All Rights

Reserved Sitemap seo web design Catch22 Marketing

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. JavaSpecialists.eu is not
connected to Oracle, Inc. and is not sponsored by Oracle, Inc.

30of3 8/3/11 3:03 PM

