
Home Newsletter Java Specialist
Club Java Training Conference

Venue Hire Java Resources Contact

The Java Specialists' Newsletter
 Issue 117 2005-12-02 Category: Language Java version: All

0 Subscribe Free RSS Feed Print

Reflectively Calling Inner Class Methods

by Dr. Heinz M. Kabutz
Abstract:

Sometimes frameworks use reflection to call methods. Depending how they find the correct method to call, we may
end up with IllegalAccessExceptions. The naive approach of clazz.getMethod(name) is not correct when we send

instances of non-public classes.

Welcome to the 117th edition of The Java(tm) Specialists' Newsletter. I am sitting outside in our garden in Cape
Town, South Africa, watching the Helmeted Guinea Fowls (Numida meleagris according to BEA's Anton de Swardt)
scurrying around on the road outside. These remarkable birds often sit in our pine trees, making their strange noise,
which in the African night can be heard at a great distance. Here is a short clip of these birds making their noise
somewhere in Namibia. Here is a picture that I took with my phone. The quality is not that great, but you can clearly
see the helmet on the top of its head.

Upcoming Java Master Courses:
 Duesseldorf, Germany, Aug 22
 Chania, Crete, Sep 6
 Cape Town, South Africa, Sep 12

In-house courses if these dates or locations do not suit you. Note that the course in Crete may also be attended
remotely via webinar.

Reflectively Calling Inner Class Methods

A year ago we had an open source workshop in Cape Town. One of our The Java(tm) Specialists' Newsletter
readers, Marcus Sundman, flew all the way down from Finland to attend it and contribute to the discussions.

I extend an open invitation to any of our readers who happen to come to Cape Town, to visit and maybe have a
barbeque together. Marcus joined us for that, and amazed us with all sorts of puzzles that we struggled to solve.

A few days ago, Marcus sent me a Java puzzle. I wrote back what I imagined the answer would be, and promised to
publish the question if I got it wrong. So here it is...

Here is a slightly simplified version of what Marcus sent me:

ppaacckkaaggee com.cretesoft.tjsn.issue117;

ppuubblliicc ccllaassss Greeter {
 ppuubblliicc vvooiidd hello() {
 System.out.println(""HHeelllloo ffrroomm GGrreeeetteerr");
 }
}

ppaacckkaaggee com.cretesoft.tjsn.issue117;

ppuubblliicc ccllaassss Exec {
 ppuubblliicc ssttaattiicc vvooiidd run(Greeter target) {
 System.out.println();

 System.out.print(""mmeetthhoodd ccaallll>> "");
 target.hello();

 System.out.print(""bbaassee ccllaassss >> "");
 run(target, Greeter.ccllaassss, ""hheelllloo"");

 System.out.print(""oobbjj ccllaassss >> "");
 run(target, target.getClass(), ""hheelllloo"");
 }

 // this calls the method using reflection
 ssttaattiicc vvooiidd run(Greeter target, Class cls, String method) {
 ttrryy {
 cls.getMethod(method, null).invoke(target, nnuullll);
 } ccaattcchh (Exception x) {
 System.out.println(x);
 }
 }

Book Review

Concurrency

Exceptions

GUI

Inspirational

Language

Performance

Software Engineering

Tips and Tricks

What is the Java
Specialists Club?

[JavaSpecialists 117] - Reflectively Calling Inner Class Methods http://www.javaspecialists.eu/archive/Issue117.html

1 of 3 8/3/11 3:04 PM

}

ppaacckkaaggee com.cretesoft.tjsn.issue117;

ppuubblliicc ccllaassss InsideJob {
 ppuubblliicc ssttaattiicc vvooiidd run() {
 Exec.run(nneeww Greeter() {
 ppuubblliicc vvooiidd hello() {
 System.out.println(""HHeelllloo ffrroomm IInnssiiddeeJJoobb"");
 }
 });
 }
}

iimmppoorrtt com.cretesoft.tjsn.issue117.*;

ppuubblliicc ccllaassss Main {
 ppuubblliicc ssttaattiicc vvooiidd main(String[] args) {
 InsideJob.run();
 Exec.run(nneeww Greeter() {
 ppuubblliicc vvooiidd hello() {
 System.out.println(""HHeelllloo ffrroomm MMaaiinn"");
 }
 });
 }
}

I read through the code, and expected to see the following output:

 method call> Hello from InsideJob
 base class > Hello from InsideJob
 obj class > Hello from InsideJob

 method call> Hello from Main
 base class > Hello from Main
 obj class > Hello from Main

Infact, when I tried it out, I decided to simplify matters by putting all the classes in the same package, in which case
you do see that output. However, when you have Main in a separate package to the rest, you get:

 method call> Hello from InsideJob
 base class > Hello from InsideJob
 obj class > Hello from InsideJob

 method call> Hello from Main
 base class > Hello from Main
 obj class > java.lang.IllegalAccessException: Class
 com.cretesoft.tjsn.issue117.Exec can not access
 a member of class Main$1 with modifiers "public"

I tried this in JDK 1.1.8, 1.2.2, 1.3.1, 1.4.2 and 1.5.0, all with the same effect. I was amazed.

To summarise the problem: If you find the method using reflection on the subclass, make sure that it is not package
access and living in another package to yourself, otherwise you will get an error when you try to call it.

This does not make any sense to me, and in my opinion should be classed as a bug in the Java Programming
Language.

At runtime, there is no difference between inner classes that have private, protected or package access. They all get
compiled to a package access class, and the compiler add links to the outer class' object if necessary. You can verify
that by decompiling the inner class with JAD using the -noinner setting.

The Exec class would therefore also not work if we used a plain package access class, such as MyGreeter:

iimmppoorrtt com.cretesoft.tjsn.issue117.Greeter;

ccllaassss MyGreeter eexxtteennddss Greeter {
 ppuubblliicc vvooiidd hello() {
 System.out.println(""HHeelllloo ffrroomm MMyyGGrreeeetteerr"");
 }
}

This is rather confusing, because we can call the method "hello" on the Greeter object, and that works. We can find
the method reflectively on the Greeter class, and call it on the derived object, and that works as well. But if we find
the method "hello" on the derived object, and then call it, we get an IllegalAccessException.

I did not know this, so I've learnt something new, thanks Marcus :-)

Now the question: does it matter? If yes, how do I fix it?

In Marcus' case, it does matter, because of the framework that he is using. It effectively means that he cannot use
anonymous inner classes, which by default are package access classes. He would have to write the Main class like
this:

iimmppoorrtt com.cretesoft.tjsn.issue117.*;

ppuubblliicc ccllaassss Main2 {
 ppuubblliicc ssttaattiicc vvooiidd main(String[] args) {
 InsideJob.run();
 Exec.run(nneeww MyGreeter());
 }
 ppuubblliicc ssttaattiicc ccllaassss MyGreeter eexxtteennddss Greeter {
 ppuubblliicc vvooiidd hello() {
 System.out.println(""HHeelllloo ffrroomm MMaaiinn"");
 }
 }

[JavaSpecialists 117] - Reflectively Calling Inner Class Methods http://www.javaspecialists.eu/archive/Issue117.html

2 of 3 8/3/11 3:04 PM

}

Now the output is as we would expect. So, no more anonymous inner classes!

Finding the Correct Method to Call

Here is another possibility, if you have the option of changing the framework code. Instead of picking the method at
the lowest level, we recursively go up the hierarchy tree until we find a class that implements it.

ppaacckkaaggee com.cretesoft.tjsn.issue117;

iimmppoorrtt java.lang.reflect.Method;

ppuubblliicc ccllaassss Exec2 {
 ppuubblliicc ssttaattiicc vvooiidd run(Greeter target) {
 System.out.println();

 System.out.print(""mmeetthhoodd ccaallll>> "");
 target.hello();

 System.out.print(""bbaassee ccllaassss >> "");
 run(target, Greeter.ccllaassss, ""hheelllloo"");

 System.out.print(""oobbjj ccllaassss >> "");
 run(target, target.getClass(), ""hheelllloo"");
 }

 // this calls the method using reflection
 ssttaattiicc vvooiidd run(Greeter target, Class cls, String method) {
 ttrryy {
 findHighestMethod(cls, method).invoke(target, nnuullll);
 } ccaattcchh (Exception x) {
 System.out.println(x);
 }
 }
 // recurse up hierarchy, looking for highest method
 pprriivvaattee ssttaattiicc Method findHighestMethod(Class cls,
 String method) {
 iiff (cls.getSuperclass() != nnuullll) {
 Method parentMethod = findHighestMethod(
 cls.getSuperclass(), method);
 iiff (parentMethod != nnuullll) rreettuurrnn parentMethod;
 }
 Method[] methods = cls.getMethods();
 ffoorr (iinntt i = 0; i < methods.length; i++) {
 // we ignore parameter types for now - you need to add this
 iiff (methods[i].getName().equals(method)) {
 rreettuurrnn methods[i];
 }
 }
 rreettuurrnn nnuullll;
 }
}

That works - but only if there is a superclass with that method definition. It won't work if we are implementing an
interface. In that case, we need to change the method findHighestMethod to also include interfaces. Disclaimer: I
am not completely sure that this will work in all cases.

 // recurse up hierarchy, looking for highest method
 pprriivvaattee ssttaattiicc Method findHighestMethod(Class cls,
 String method) {
 Class[] ifaces = cls.getInterfaces();
 ffoorr (iinntt i = 0; i < ifaces.length; i++) {
 Method ifaceMethod = findHighestMethod(ifaces[i], method);
 iiff (ifaceMethod != nnuullll) rreettuurrnn ifaceMethod;
 }
 iiff (cls.getSuperclass() != nnuullll) {
 Method parentMethod = findHighestMethod(
 cls.getSuperclass(), method);
 iiff (parentMethod != nnuullll) rreettuurrnn parentMethod;
 }
 Method[] methods = cls.getMethods();
 ffoorr (iinntt i = 0; i < methods.length; i++) {
 // we ignore parameter types for now - you need to add this
 iiff (methods[i].getName().equals(method)) {
 rreettuurrnn methods[i];
 }
 }
 rreettuurrnn nnuullll;
 }

Thanks Marcus for that interesting information. I was not aware of this subtlety of reflection.

Kind regards

Heinz

 Language Articles Related Java Course Discuss at The Java Specialist Club

© 2010 Heinz Kabutz - All Rights
Reserved Sitemap seo web design Catch22 Marketing

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. JavaSpecialists.eu is not
connected to Oracle, Inc. and is not sponsored by Oracle, Inc.

[JavaSpecialists 117] - Reflectively Calling Inner Class Methods http://www.javaspecialists.eu/archive/Issue117.html

3 of 3 8/3/11 3:04 PM

