
Applying the Visitor pattern using reflection

Inigo Surguy
About the Visitor pattern

The Visitor pattern, as defined in Design Patterns, is great if you're acting on a structure of objects in several
different ways, and it makes it easy to change between the actions that you're performing on each, without having
to resort to instanceof's or changing the code of the objects you act upon.

A limitation to the standard implementation of the pattern is that it's not suitable when the classes defining the
structure itself are frequently changing, rather than the actions to be applied to them. I describe here an
implementation of the Visitor that will cope with a changing structure, by using reflection to select the narrowest
appropriate visit method to call at runtime.

A standard Java Visitor implementation

An example of a standard Java implementation of the Visitor pattern is:

 class Tester {
 public static void main(String[] args) {
 Cheese cheese1 = new Wensleydale();
 Cheese cheese2 = new Gouda();
 Cheese cheese3 = new Brie();
 Visitor v = new VisitorImpl();
 cheese1.accept(v);
 cheese2.accept(v);
 cheese3.accept(v);
 }
 }

 interface Visitor {
 void visit(Wensleydale w);
 void visit(Gouda g);
 void visit(Brie b);
 }

 class VisitorImpl implements Visitor {
 public void visit(Wensleydale w) { System.out.println(w.wensleydaleName()); }
 public void visit(Gouda g) { System.out.println(g.goudaName()); }
 public void visit(Brie b) { System.out.println(b.brieName()); }
 }

 interface Cheese { void accept(Visitor v); }
 abstract class BaseCheese implements Cheese { }
 class Wensleydale extends BaseCheese {
 String wensleydaleName() { return "This is wensleydale"; }
 public void accept(Visitor v) { v.visit(this); }
 }
 class Gouda extends BaseCheese {
 String goudaName() { return "This is gouda"; }
 public void accept(Visitor v) { v.visit(this); }
 }
 class Brie extends BaseCheese {
 String brieName() { return "This is brie"; }
 public void accept(Visitor v) { v.visit(this); }

}

It's very easy to add another Visitor, to act on your structure of objects in a different way, but it's hard to add
another type of cheese; you have to go through all of your existing Visitors adding a "visit(Gorgonzola g)" method.

So, the standard Visitor is very useful when you want to perform a number of different operations on one static set
of objects, but if the types of objects that you want to act on is changing, it's not so useful.

Overcoming the problems of the standard Visitor using reflection

But, you can solve this by using reflection, so the method to use is determined at runtime rather than at
compile-time. This way, you can define your visitor to accept the broadest type, rather than all the narrow types,
and you can move your "accept" code into a superclass, rather than having it repeated in all of your
implementations. New classes that you add will be handled by the default case in the Visitor, or by a case
appropriate to the interface that they implement.

Here's an example:

 import java.lang.reflect.*;

 class Tester {
 public static void main(String[] args) throws Exception {
 Cheese cheese1 = new Wensleydale();
 Cheese cheese2 = new Gouda();
 Cheese cheese3 = new Brie();
 Cheese cheese4 = new Gorgonzola();
 Cheese cheese5 = new SomeOtherCheese();

 Visitor v = new VisitorImpl();
 cheese1.accept(v);
 cheese2.accept(v);

Articles

Java
Python
Delphi
XML and CSS

About me

Contact me

About this site

RSS
Client / server-side

XSLT

My books

"Love this book - as a seasoned
web developer with heaps of
experience I find this book a
great reference tool, fantastic
prompter when I'm struggling
with XML technologies, all round
very well written and did I
mention already PRACTICAL." -

Hamish Fraser -
amazon.com review

"...tackles crucial technical
issues that anyone involved in a
CMS must face, but the pitch is
accessible to most readers
interested in the highly complex
, and highly fascinating world of
CMS" -

Paola DI MAIO - Content
Wire

Applying the Visitor pattern using reflection http://surguy.net/articles/visitor-with-reflection.xml

1 of 2 8/3/11 3:03 PM

 cheese3.accept(v);
 cheese4.accept(v);
 cheese5.accept(v);
 }
 }
 interface Visitor { void visit(Cheese c) throws Exception; }
 class VisitorImpl implements Visitor {
 private Method getPolymorphicMethod(Cheese cheese) throws Exception {
 Class cl = cheese.getClass(); // the bottom-most class

// Check through superclasses for matching method
 while(!cl.equals(Object.class)) {
 try {
 return this.getClass().getDeclaredMethod("visit", new Class[] { cl });
 } catch(NoSuchMethodException ex) {
 cl = cl.getSuperclass();
 }
 }
 // Check through interfaces for matching method
 Class[] interfaces = cheese.getClass().getInterfaces();
 for (int i=0; i<interfaces.length; i++) {
 try {
 return this.getClass().getDeclaredMethod("visit", new Class[] { interfaces[i] });
 } catch(NoSuchMethodException ex) {
 }
 }
 return null;
 }

 public void visit(Cheese c) throws Exception {
 Method downPolymorphic = getPolymorphicMethod(c);
 if (downPolymorphic == null) {
 defaultVisit(c);
 } else {
 downPolymorphic.invoke(this, new Object[] {c});
 }
 }

 void defaultVisit(Cheese c) { System.out.println("A cheese"); }
 void visit(Wensleydale w) { System.out.println(w.wensleydaleName()); }
 void visit(Gouda g) { System.out.println(g.goudaName()); }
 void visit(Brie b) { System.out.println(b.brieName()); }
 void visit(AnotherCheese a) { System.out.println(a.otherCheeseName()); }
 }

 interface Cheese { void accept(Visitor v) throws Exception; }
 interface AnotherCheese extends Cheese { String otherCheeseName(); }
 abstract class BaseCheese implements Cheese {
 public void accept(Visitor v) throws Exception { v.visit(this); }
 }
 class Wensleydale extends BaseCheese { String wensleydaleName() { return "This is wensleydale"; } }
 class Gouda extends BaseCheese { String goudaName() { return "This is gouda"; } }
 class Brie extends BaseCheese { String brieName() { return "This is brie"; } }
 class SomeOtherCheese extends BaseCheese implements AnotherCheese {
 public String otherCheeseName() { return "Different cheese "; }
 }
 class Gorgonzola extends BaseCheese { String gorgonzolaName() { return "This is gorgonzola"; } }

Download this code

When to use this implementation

Although this code is more flexible, it's not suitable for all situations. The downsides are:

Reflection is slow - so you're trading flexibility for speed.

The code's more complicated; but the long getPolymorphicMethod can be implemented only once in an
abstract Visitor superclass, from which actual Visitor implementations are subclassed.

Note that in this sample code I'm throwing lots of exceptions; in practice you'd probably want to handle some
of them.

References

I got the idea of using reflection to find the narrowest method to call from Dr. Heinz Kabutz's
(heinz@javaspecialists.co.za) excellent Java Specialists Newsletter (see Issue 9, on Depth-first polymorphism).
He's since written a newsletter called Visiting your Collection's Elements based on the ideas in this article. I
recommend JavaSpecialists to anyone interested in advanced Java topics.

The Visitor design pattern is described in the "Gang of Four" Design Patterns book. There's information on
implementing it in Java in Bruce Eckel's Thinking in Patterns book.

Return to index

Return to the index page.

Applying the Visitor pattern using reflection http://surguy.net/articles/visitor-with-reflection.xml

2 of 2 8/3/11 3:03 PM

